Effects of 1,8-cineole on Na+ currents of dissociated superior cervical ganglia neurons
نویسندگان
چکیده
1,8-Cineole is a terpenoid present in many essential oil of plants with several pharmacological and biological effects, including antinociceptive, smooth muscle relaxant and ion channel activation. Also, 1,8-cineole blocked action potentials, reducing excitability of peripheral neurons. The objective of this work was to investigate effects of 1,8-cineole on Na(+) currents (INa(+)) in dissociated superior cervical ganglion neurons (SCG). Wistar rats of both sexes were used (10-12 weeks old, 200-300g). SCG's were dissected and neurons were enzymatically treated. To study 1,8-cineole effect on INa(+), the patch-clamp technique in whole-cell mode was employed. 1,8-Cineole (6.0mM) partially blocked INa(+) in SCG neurons. The effect stabilized within ∼150s and there was a partial recovery of INa(+) after washout. Current density was reduced from -105.8 to -83.7pA/pF, corresponding to a decrease to ∼20% of control. 1,8-Cineole also reduced the time-to-peak of INa(+) activation and the amplitude and decay time constants of INa(+) inactivation. Current-voltage plots revealed that 1,8-cineole left-shifted the V1/2 of both activation and inactivation curves by ∼10 and ∼20mV, respectively. In conclusion, we demonstrate that 1,8-cineole directly affects Na(+) channels of the SCG by modifying several gating parameters that are likely to be the major cause of excitability blockade.
منابع مشابه
Stereological Study on the Neurons of Superior Cervical Sympathetic Ganglion in Diabetic Rats
Background: Most research on autonomic dysfunction of diabetes mellitus is conducted on ganglions innervating gastrointestinal (GI) tract and there are limited works focusing on cervical sympathetic ganglia. The effects of diabetes mellitus (DM) on the neurons of superior cervical sympathetic ganglion (SCSG) are investigated by stereological methods. Material and Methods: Female rats (n=72) ran...
متن کامل17h-estradiol attenuates a, h-meATP-induced currents in rat dorsal root ganglion neurons
The effects of 17h-estradiol on the a,h-me ATP-induced currents were studied on dorsal root ganglion (DRG) neurons using whole-cell recording technique. Three types of currents (transient, sustained or biphasic) were evoked by a,h-me ATP in acutely dissociated DRG neurons. When neurons were pre-incubated with 17h-estradiol (10–1000 nM) for 4 min, an inhibition of the transient current and the t...
متن کاملBilirubin Modulates Acetylcholine Receptors In Rat Superior Cervical Ganglionic Neurons In a Bidirectional Manner
Autonomic dysfunction as a partial contributing factor to cardiovascular instability in jaundiced patients is often associated with increased serum bilirubin levels. Whether increased serum bilirubin levels could directly inhibit sympathetic ganglion transmission by blocking neuronal nicotinic acetylcholine receptors (nAChRs) remains to be elucidated. Conventional patch-clamp recordings were us...
متن کاملAlpha2-adrenoceptor-independent inhibition of acetylcholine receptor channel and sodium channel by dexmedetomidine in rat superior cervical ganglion neurons.
Both central and peripheral sympathetic nervous systems contribute to the cardiovascular effects of dexmedetomidine (DMED), a highly selective and widely used a2-adrenoceptor agonist for sedation, analgesia, and stress management. The central sympatholytic effects are augmented by peripheral inhibition of sympathetic ganglion transmission. The mechanism is not clear. In this research, using con...
متن کامل1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1
BACKGROUND Essential oils are often used in alternative medicine as analgesic and anti-inflammatory remedies. However, the specific compounds that confer the effects of essential oils and the molecular mechanisms are largely unknown. TRPM8 is a thermosensitive receptor that detects cool temperatures and menthol whereas TRPA1 is a sensor of noxious cold. Ideally, an effective analgesic compound ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience Letters
دوره 595 شماره
صفحات -
تاریخ انتشار 2015